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Abstract. In this work we present a detailed investigation of native point defects energetics in cubic
SiC, using state-of-the-art first principles computational method. We find that, the carbon vacancy is the
dominant defect in p-type SiC, regardless the growth conditions. Silicon and carbon antisites are the most
common defects in n-type material in Si-rich and C-rich conditions respectively. Interstitial defects and
silicon vacancy are less favorite from the energetic point of view. The silicon vacancy tends to transform
into a carbon vacancy-antisite complex and the carbon interstitial atom prefers to pair to a carbon antisite.
The dumbbell structure is the lowest-energy configuration for the isolated carbon interstitial defect, and
the tetrahedral interstitial silicon is a stable structure in p-type and intrinsic conditions, while in n-type
material the dumbbell configuration is the stable one. Our results suggest that, in samples grown in Si-
rich stoichiometric conditions, native defects are a source of n-doping and of compositional unbalance of
nominally intrinsic SiC, in accord with experimental evidence.

PACS. 61.72.Ji Point defects (vacancies, interstitials, color centers, etc.) and defect clusters – 68.55.Ln
Defects and impurities: doping, implantation, distribution, concentration, etc. – 74.62.Dh Effects of crystal
defects, doping and substitution

1 Introduction

Silicon carbide is a group-IV compound material with a
paramount importance for electronic, structural or nuclear
applications. It exists in a variety of closed-packed ar-
rangements or polytypes, the most common ones being
the cubic (zincblende) 3C-SiC and the hexagonal 6H-SiC
structure. Furthermore, the chemical similarity of Si and
C atoms allows for the formation of non-stoichiometric
disordered SixC1−x solid solutions. Among those solid
solutions ideal zincblende SiC represents a special and
very stable structure. Experimental analysis of lattice con-
stant and density indicates that 3C-SiC is indeed non-
stoichiometric and Si-rich [1]. Moreover electrical mea-
surements show that “as-grown” SiC is weakly n-type [2].
Those findings suggest that native lattice defects (like sil-
icon antisites, carbon vacancies and silicon interstitials)
play an important role in determining the actual compo-
sition and electronic properties of SiC.

Several authors investigated the electronic structure
and thermodynamics of defects in SiC using ab initio
or tight-binding semi-empirical techniques, focusing their
attention on a subset of possible defects, mainly vacan-
cies [3,4] and antisites [5], or limiting their investigation
to neutral defects [6]. Other works have been addressed to
selected electronic properties of these defects, as the hy-
perfine tensor [7]. Some investigations made use of dras-
tic approximations on the computation of the electronic
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structure and therefore they cannot be considered any
longer as accurate state-of-the-art calculations [8,9].

Noticeable exceptions are references [10–14], where an
overall picture of the energetics of point defects in SiC is
given. Unfortunately, in reference [10] very small super-
cells (32 atoms) have been used in the calculation, there-
fore the reliability of the results is somewhat questionable.
In other works [11–14] a great deal of attention was de-
voted to those aspects of defect physics relevant for dif-
fusing mechanism in SiC, nevertheless a comprehensive
database of the formation energy for all of the defects
considered is there missing.

In this work we provide a complete and consistent
picture of defects in SiC. In particular we propose a
methodological approach especially designed to study
those defects with ionization levels in the upper part of
the conduction band gap, whose investigation is some-
what problematic within the framework of the density
functional theory (DFT).

2 Method

2.1 Supercell approach

The formation energies of point defects have been
computed using the standard formalism by Zhang
and Northrup [15]. We define the formation energy
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∆Hform(DQ) for a defect D in the charge state Q as

∆Hform(DQ) = Etot(DQ) −
∑

X

nXµX

+ Q(µe + Ev) + M(Q), (1)

where µe is the electron chemical potential (equaling the
Fermi level EF in our T = 0 K calculations), Etot(DQ)
is the total energy of the defective supercell in charge
state Q, Ev its top valence band energy, M(Q) the defect-
dependent multipole corrective term of reference [16],
nX and µX the number of atoms of the species involved
(X = C, Si) and their chemical potentials, respectively.
The chemical potential of C and Si (µC and µSi) are not
independent variables, since both species are in equilib-
rium with SiC bulk compound. Therefore µC and µSi must
satisfy the following condition:

µbulk
SiC = µC + µSi. (2)

Furthermore each chemical potential has to be lower than
its bulk value in order to inhibit phase separation, namely

µC,Si < µbulk
C,Si (3)

so that we can express the formation energy of a defect as
a function of one chemical potential only

∆Hform(DQ) = Etot(DQ) − nCµbulk
SiC

− (nSi − nC)µSi + Q (µe + Ev) + M(Q) (4)

where
µbulk

SiC − µbulk
C ≤ µSi ≤ µbulk

Si . (5)

Total energies and bulk chemical potentials are com-
puted within the local density functional theory follow-
ing the parameterization of Perdew and Zunger [17] to
the exchange-correlation functional, using ultra-soft pseu-
dopotentials [18] and the plane-waves code provided in the
VASP package [19]. As for the bulk chemical potential of
Si and C we use their calculated value in the diamond
structure at their theoretical equilibrium values.

We simulate an isolated defect within periodic bound-
ary conditions via the repeated supercell approach. We use
a very large 3×3×3 supercell of cubic shape encompassing
216 atoms for all of the defects examined here. To manage
those large supercells we used a very soft C pseudopoten-
tial available within VASP package. This pseudopotential
gives a very good description of important bulk proper-
ties of SiC, like heat of formation that perfectly matches
the experimental value of −0.66 eV/formula-unit [20] and
lattice parameter (4.312 Å) in good agreement with the
experimental value 4.360 Å [21]. A plane-wave cutoff of
211 eV is used throughout our calculations. As a further
check we compared the formation energy for the fully re-
laxed vacancies and antisites here investigated using two
different C atom pseudopotentials in a 2 × 2 × 2 super-
cells. We estimated that the error induced by the use of a
soft pseudopotential on the defects formation energies is
at most 0.2 eV.

2.2 Reciprocal space sampling

Supercells size and BZ sampling are crucial aspects of
accurate point defects calculations. Ideally a defect en-
ergy calculation within the periodic boundary conditions
(PBC) would require a supercell large enough to insure
that (i) the interaction among the periodic images of the
defect is negligible, (ii) the total energy for the supercell
is independent of the k point sampling used in the calcu-
lations. However, even for the largest supercells used in
actual first-principles calculations, the interaction among
defect images is not negligible and BZ sampling is not a
matter of trivial choice. The crucial point is that within
PBC, the interaction between periodic images causes a dis-
persion of the defect levels in the gap. Consequently, we
have to deal with defects bands rather that with defects
levels. Defects bands do not faithfully preserve the prop-
erties of their corresponding defects levels. Remarkably,
defects bands do not have the same degeneracy of defects
levels. The loss of degeneracy leads to an erroneous occu-
pation of the defects states; indeed, according to the rules
for level occupation in semiconducting materials, different
occupations will be attributed to those state of the multi-
plets originated form the split of an otherwise degenerate
defect level. Moreover the energy split among the multi-
plet states are added in the band structure term of the
total energy. It is clear that as a consequence, erroneous
charge distributions and total energies may be obtained
with this procedure. A detour to avoid this unphysical ef-
fect is to restrict the BZ sampling to the Γ -point alone,
where the degeneracy of defect levels is preserved. This
choice has two drawbacks, namely even for large super-
cells (216 atoms) bulk-like properties are poorly converged
for a Γ -point sampling calculation, and at the supercell
Γ -point the conduction band energy is grossly underesti-
mated because of the well-known DFT band gap problem.
As a consequence those defects whose ionization levels are
higher than the DFT band gap and lower than the ac-
tual material band gap, will appear above the conduction
band minimum. This effect makes problematic the attri-
bution of the correct occupation for the eigenstates, since
it is not easy to disentangle the proper extrinsic level from
the bulk band structure background. Customary the so-
lution of the band gap problem is in the use of a set of
special k points that avoids the BZ central region, typ-
ically a 2 × 2 × 2 Monkhorst-Pack set. For this kind of
sampling a satisfactory convergence of the bulk environ-
ment is achieved but the above mentioned problem of the
defects levels degeneracy remains unsolved.

Summarizing a proper choice of the BZ sampling would
require a set where at each k point: (i) the defects levels
degeneracy is preserved, as at the Γ point, (ii) the con-
duction band energy is high enough that DFT band gap
underestimation does not constitute a problem, (iii) the
set provides a good convergence of the total energy with
respect to the size of the supercell used.

In this work we use a procedure that circumvents both
the degeneracy problem and the band gap DFT underes-
timation. Makov et al. [22] have shown that for the calcu-
lation of aperiodic systems (e.g. isolated defects), it exists
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an optimal set of k points. In the specific case of cubic su-
percells, it consists of the high-symmetry Γ and R point.
The use of this set allows the cancellation of those terms
in the total energy arising from the interaction of adja-
cent periodic images, greatly improving the convergence
of the formation energy with respect to the supercell size.
In our specific case the use of this two-point set warrants
that at the R point the actual degeneracy of the defect
levels is preserved (as in the Γ point); furthermore, at
the R point the conduction band is high enough, so that
the DFT band gap underestimation does not represent a
problem. Since we have to attribute to the eigenstates at
Γ a proper occupation we device the following procedure.
We start with a trial calculation of the supercell electronic
structure with the k points set suggested in reference [22].
We inspect the eigenspectrum at R and identify the pres-
ence of defects levels in the band gap. We explore the
band structure at Γ and identify the position of the same
levels with respect to the bulk band structure. If the oc-
cupied levels lie below the conduction band minimum at
Γ we choose the occupation at Γ to be the same as at
the R point. If we find the level at Γ to be above the
conduction band we set the occupation numbers so that
the conduction band states at Γ are empty and the defect
levels is properly occupied according to the total number
of electrons. At first this procedure could look somewhat
cumbersome, especially because of the need to set by hand
the occupation numbers, instead to rely on Fermi-Dirac
or Methfessel-Paxton [23] distribution functions. In real-
ity for supercells as large as our (216 atoms) we found
easy to identify the nature of the eigenstates at Γ from
the knowledge of the band structure at the R point. This
procedure offers moreover the additional advantage that
occupation numbers of a given band do not vary across
the BZ.

2.3 Charged cell corrections

Another important aspect of defect calculations, is the
proper evaluation of the formation energy for charged de-
fects. The long-range nature of the electrostatic interac-
tion requires the supercell to be a neutral system, therefore
a compensating jellium background is added to neutralize
the defect charge. Such a procedure of “neutralization”
is still tricky, since, the total energy of the supercell will
contain a terms due to the jellium-defect interaction that
is absent in the actual system. This term is a non negli-
gible component even for very large supercells, therefore
accurate calculation require that this source of error is
properly handled. Historically two approaches have been
used to correct the formation energy for the effect of the
neutralization: the average potential correction and the so
called Madelung correction.

Within the first method [25], the electron chemical po-
tential µe is referred to a charge dependent valence band
maximum EQ

v defined as:

EQ
v = Ev(bulk) +

[
V Q

ave(defect) − Vave(bulk)
]

(6)

where Vave(defect) is the average potential far from the
defect center in the supercell and Vave(bulk) the corre-
sponding value in the ideal bulk supercell. Accordingly in
this approach the defect formation energy is written as:

∆Hform(DQ) = Etot(DQ) −
∑

X

nXµX + Q
(
µe + EQ

v

)
.

(7)
In the second approach [16] an explicit correction for the
formation energy M(Q) is given. Its value in the case of a
cubic supercell of side length L is:

M(Q) =
Q2α

2L
+

2πQq

3L3
(8)

where α is the Madelung constant for the supercell lat-
tice and q is the quadrupole moment of the defect charge.
In literature both methods have been employed in the
calculation of defects formation energies in SiC, in refer-
ences [3–5] the average potential correction was used while
in reference [26] the Madelung correction is used. We note
that, in general, works dealing with wurtzite structure SiC
employ the average potential correction since the imple-
mentation of the quadrupole moment corrective term of
equation (8) is extremely cumbersome for hexagonal struc-
ture crystals. In this work we choose to employ the latter
as a standard procedure and critically discuss the, some-
what sizable, differences in the results obtained with the
former. We find that a proper correction of the periodic
images interaction for charged defects is the most impor-
tant aspect of a well-converged calculation.

2.4 Jahn-Teller effect

A last but not less important methodological aspect of our
calculations is the proper choice of the occupation num-
bers for degenerate states. It is known that defects with
partially filled degenerate states undergo to symmetry
lowering distortions called Jahn-Teller (JT) effect. This
effect splits a degenerate level into a multiplet with an
upper empty (or nearly empty) and a lower filled (or par-
tially filled) branch. Such kind of distortions are very diffi-
cult to reproduce by first-principles calculation because of
the very low energy gain normally involved in the symme-
try lowering distortion. We performed test calculations to
understand if technical aspects of the present calculation
can be responsible for the absence or the underestimation
of existing JT effect. We found that the occupation of the
defect level in its initial configuration plays an important
role. As stated above we used for the BZ sampling two
high-symmetry points where the actual degeneracy of the
isolated defect is preserved. Therefore, in the high sym-
metry configuration an arbitrary choice of the occupation
numbers for the defect level is possible. We can decide
to distribute the occupation uniformly on the eigenstates
contributing to the degenerate level according to finite
temperature smearing distributions or to attribute to the
lower eigenstate(s) full occupation and leaving the others
empty. We find that the outcome of the calculation is very
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different. Indeed, starting from a uniform occupation and
a slightly distorted defect geometry we do not get any
important symmetry lowering distortion, while for non-
uniform occupations a sizeable distortion and a substan-
tial gain of energy is obtained. These tests suggest that
JT distortions can be properly computed only if a non-
uniform occupation is attributed to degenerate (or nearly
degenerate) levels.

3 Results

3.1 Overall picture

We investigated eight kinds of native defects, namely
carbon vacancy (VC), silicon vacancy (VSi), silicon anti-
site (SiC), carbon antisite (CSi), interstitial silicon (SiI),
interstitial carbon (CI), the complex formed by a carbon
vacancy and a carbon antisite (VC-CSi), a carbon inter-
stitial paired to a carbon antisite (CI-CSi). In the case
of the vacancies and antisites the geometric structure of
the defect is straightforward. As for interstitials, the iden-
tification of the minimum energy configuration is not as
easy. Indeed the search for the stable structure for the in-
terstitial atoms goes through the comparison of different
candidate geometries. An exhaustive work would imply
a search for several local minimum energy configurations
(i.e. tetrahedral, hexagonal, bond-center, dumbbell). The
ensemble of these configurations is very large; here we lim-
ited our investigation to tetrahedral and dumbbell config-
urations. We rule out the hexagonal interstitial because
it is found to be an unstable configuration [12] and the
bond-center because it is a geometry usual of small mono-
valent and divalent atoms (e.g. hydrogen and oxygen). A
tetrahedral interstitial atom has two possible geometries,
depending on the arrangement of the neighboring atoms:
the TS configuration (where the interstitial atom is sur-
rounded by four silicon atoms) and the TC configuration
(where neighbors are carbon atoms). The dumbbell inter-
stitial is a more complex structure where two atoms share
the same lattice site: one is the atom that initially oc-
cupied that position and the other is the real interstitial
species. Four kind of dumbbell interstitials are possible:
two are CI-Si and SiI-Si pairs centered on Si sites; the
other two ones are CI-C and SiI-C centered on C sites,
where subscript I indicates the interstitial species. The
inclusion in the present investigation of dumbbell inter-
stitials is motivated by the results obtained in references
[6,12], suggesting that interstitial atoms prefer dumbbell
configurations.

We show our results in Table 1 and in the form of a
diagram in Figures 1 and 2 for the Si-rich and C-rich con-
ditions respectively. For the specific choices of the pseu-
dopotentials used in this work the values of the chemical
potentials for silicon (carbon) in Si-rich and C-rich stoi-
chiometric conditions corresponds to −5.97 (−10.73) eV
and −6.63 (−10.07) eV respectively. Besides the differ-
ences in the formation energies of the defects between Si-
rich and C-rich conditions, we find common trends in the
behavior of the defects we investigated.

Table 1. Charge states, range of stability, and formation en-
ergy (units of eV) for the defects studied. For each defect and
charge state considered in this work we show the lower and
upper bound for the electron chemical potential µe(min/max)
and the corresponding formation energies ∆Hform(DQ) in Si-
rich and C-rich stoichiometric conditions.

Defect µmin
e µmax

e ∆Hform(DQ)

Si-rich C-rich

V 2+
C 0.00 1.32 1.20/3.84 1.86/4.50

V 0
C 1.32 2.40 3.84 4.50

V 1+
Si 0.00 0.41 8.37/8.78 7.71/8.12

V 0
Si 0.41 0.88 8.78 8.12

V 1−
Si 0.88 1.40 8.78/8.26 8.12/7.60

V 2−
Si 1.40 1.89 8.26/7.28 7.60/6.62

V 3−
Si 1.89 2.15 7.28/6.49 6.62/5.83

V 4−
Si 2.15 2.40 6.49/5.51 5.83/4.85

C0
Si 0.00 2.40 4.15 2.83

VC-C2+
Si 0.00 1.23 4.26/6.71 3.60/6.05

VC-C1+
Si 1.23 1.76 6.71/7.24 6.05/6.58

VC-C0
Si 1.76 2.40 7.24 6.58

Si1+C 0.00 0.13 3.53/3.66 4.85/4.98

Si0C 0.13 2.40 3.66 4.98

CI-C
2+
Si 0.00 0.81 6.02/7.64 4.02/5.64

CI-C
0
Si 0.81 1.54 7.64 5.64

CI-C
2−
Si 1.54 2.40 7.64/5.91 5.64/3.91

C-Si〈100〉2+ 0.00 0.81 5.71/7.31 5.05/6.65

C-Si〈110〉0 0.81 1.81 7.31 6.65

C-Si〈110〉1− 1.81 2.16 7.31/6.96 6.65/6.30

C-Si〈110〉2− 2.16 2.40 6.96/6.48 6.30/5.82

Si-C〈110〉4+ 0.00 1.43 3.52/9.22 4.18/9.88

Si-C〈110〉3+ 1.43 1.71 9.22/10.06 9.88/10.72

Si-C〈110〉2+ 1.71 1.99 10.06/10.63 10.72/11.29

Si-C〈110〉1+ 1.99 2.22 10.63/10.86 11.29/11.52

Si-C〈110〉0 2.22 2.40 10.86 11.52

First of all, the carbon vacancy together with the sili-
con and carbon antisites are the dominant defects in SiC.
The silicon interstitial defect has an high formation energy
and does not play an important role in SiC grown in equi-
librium thermodynamic conditions. As for the VC-CSi and
CI-CSi complexes, their concentrations are low, and their
role as a donating defects is marginal. There is also a ten-
dency of the defects to be electron donors. Those accepting
electrons, (i.e. the silicon vacancy, the carbon interstitial
and the carbon interstitial-antisite complex) have a for-
mation energy higher than that of the donors for most of
the allowed range of the electron chemical potential. As
for antisites and vacancies, those ones associated with an
excess of silicon are favored over their carbon rich counter-
part. An exception is represented by the carbon antisite
in C-rich conditions. Finally, we find that the tetrahedral
interstitial is always energetically unfavored with respect
to the formation of dumbbell configurations or interstitial-
antisite complexes, the sole exception represented by the
fourfold donor silicon interstitial defect.
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Fig. 1. Formation energy of native point defects in 3C-SiC (Si-rich conditions). The charge states for the defects are shown
explicitly and the ionization levels are marked by a vertical bars. Left panel: Vacancies, antisites and VC-CSi complex. Right
panel: Carbon, silicon interstitials and CI-CSi complex.
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Vacancies, antisites and CI-CSi complex. Right panel: Carbon, silicon interstitials and VC-CSi complex.

We divided the diagrams in Figures 1 and 2 in four
regions (labeled A,B,C and D respectively) with common
features. Region A spans over an interval 1.23 (0.48) eV
wide in Si-rich (C-rich) conditions. In this region V 2+

C is
the dominant defect. Its formation energy varies from 1.20
(1.86) eV to 3.66 (2.83) in Si-rich (C-rich) growth con-
ditions. These results indicate that especially in Si-rich
growth conditions, p-type doping of SiC is compensated
by the formation of double donor carbon vacancies. Re-
gion B refers to the conditions where the antisites are the
lowest energy defects and V 2+

C is the next lower energy
defect. This region is very wide in C-rich SiC (from 0.48
to 1.32 eV above Ev) because of the low formation energy

for CSi, and it is virtually absent in Si-rich SiC; intrinsic
and lightly n-type material falls in this region. Region C
spans over an interval where the lowest energy non neutral
defect is the VC-CSi complex. The width of this region de-
pends on the stoichiometry at growth. In C-rich SiC, the
formation energy for CI-CSi is lower than that of VC-CSi

and therefore region C extends up to the 0/2− ioniza-
tion level of CI-CSi. In Si-rich SiC, the VC-CSi complex
is lower in energy and region C extends up to the 1+/0
ionization level of VC-CSi. Finally, region D includes those
part of the diagram where the dominant non neutral de-
fects are acceptors. In this region n-type doping may be
partially compensated by a light background of acceptors.
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The identity of those defects depends on the material stoi-
chiometry, in Si-rich conditions VSi is the dominant defect
while, in C-rich conditions the CI-CSi is the most com-
mon acceptor. Since those defects have a high formation
energies n-type doping of SiC is not affected by relevant
self-compensation.

The results of our calculations suggests that intrinsic
SiC is a lightly n-type material, with a Fermi level lo-
cated just above the midgap, near the boundary between
region B and C. Indeed, the existence of donating V 2+

C
will push EF above its midgap value near the 2+/0 ion-
ization level. In region C the sole donors are the VC-CSi

complex and the silicon interstial defect, whose concentra-
tion is too low to be effective as a source of free carriers.
In the midgap region the formation energy of the carbon
vacancy is ∼4 eV and its concentration is very low. On the
base of pure equilibrium thermodynamics and of the val-
ues for the formation energy of our calculations we should
conclude that native defects in SiC are responsible for a
very low n-type doping whose concentration strongly de-
pends on the material growth temperature. We point out
that our calculations do not include the vibrational en-
tropic term of the formation energy. We are not aware of
any such calculation for the present material, we can only
guess that the values of the entropy could be similar to
those computed for the vacancy and interstitials in sili-
con [24], that is about 8 kB in the case of the vacancy.
Since SiC growth temperature can be as high as 2000 ◦C
the effect of the entropic term would lower the formation
energy of the vacancy by ∼2 eV. It is therefore hard to
make a definitive assessment about the actual absolute
concentration of free carriers in intrinsic SiC. Given the
uncertainty on the concentration of these defects, we can
say that our results are not in disagreement with the ex-
perimental evidence. The n-type character of nominally
undoped SiC samples grown in Si-rich conditions [2] can
be attributed (partially or totally) to the effect of the car-
bon vacancies. Moreover in intrinsic or n-type SiC samples
(EF ≥ 1.2 eV) grown in Si-rich conditions, the dominant
defects are VC and SiC; both defects are responsible for
the experimental evidence of silicon excess in most SiC
samples [1]. We point out that our calculations predict
that, in C-rich growth conditions, CSi is the lowest energy
defect for Fermi level above 0.48 eV. This finding implies
that the experimental evidence of an excess of Si in as-
grown material is not an unavoidable feature of SiC. On
the contrary, it appears that the deviation from perfect
stoichiometry in SiC is due to an unbalance between the
chemical potential toward Si-rich conditions during the
growth process.

3.2 Vacancies and antisites

The energetics of charged vacancies and antisites we
present here is in general agreement with previous find-
ings. Large supercells calculations for the vacancies were
performed in references [3,4,12]. Our results for the car-
bon vacancy compares well with those of reference [3] both

in the formation energy and in the ionization levels. In Fig-
ure 3 (left panel) we show that accounting for the JT dis-
tortion and the Madelung corrections (Eq. (1)), the carbon
vacancy has a single ionization level 2+/0 at 1.32 eV. We
notice that, according to the procedure of reference [25]
(dashed line) the ionization level 2+/0, is located above
the calculated conduction band at Γ (together with a sec-
ond 0/2− ionization level), and its value is shifted down
as a consequence of the Madelung correction. This find-
ing shows that a correct choice for the occupation of the
eigenstates is fundamental in this case. In reference [3]
the problem was solved using a single k point sampling,
which results from a (2 × 2 × 2) Monkhorst-Pack mesh.
The disadvantage of this choice is the loss of the actual
defect level degeneracy, and the possible underestimation
of the JT effect. Indeed in reference [3] the authors do not
afford a direct calculation of the JT effect as a direct to-
tal energy difference calculations, but rely on an indirect
estimation of the JT splitting, by means of an analyti-
cal nearest-neighbor vacancy tight-binding model. On the
contrary here we perform a direct energy minimization,
starting from a slightly distorted configuration and keep-
ing the occupation constrained, as described in Section 3.
The results of this procedure looks correct, in Figure 3,
we show the results of the calculation for the tetrahedrally
symmetric vacancy (dotted line). Our estimate for the JT
energy gain for the neutral state is ∆EJT = 0.78 eV fa-
vorably compares with the value of 1.13 eV reported in
reference [3].

In Figure 3 (right panel) we show the formation en-
ergy for VSi and VC-CSi. The latter has been included in
our calculation, since the results of reference [12] suggest
that in p-type conditions VSi is a metastable defect that
converts into a VC-CSi complex. We find that our results
for the silicon vacancy agree with those of reference [4]
for the spin unpolarized system, while a sizable difference
exists with reference [3]. As shown in Figure 3, the charge
state of VSi varies from 2+ to 4− as the electron chemi-
cal potential moves through the band gap. In reference [3]
the lowest charge state is instead 2−. Therefore our re-
sults support the finding of reference [4] that a 4− charge
state exists for the silicon vacancy. Furthermore, we agree
with reference [26] that JT distortions are negligible in VSi.
Comparing the formation energy of VSi and VC-CSi we con-
firm that VSi is a metastable defect for charge states from
1+ to 2−. This has very important consequences for the
properties of intrinsic SiC. In absence of this complex, VSi

would play the role of acceptor for EF below 1.76 eV, in-
stead, converting into VC-CSi, the silicon vacancy becomes
a donor, mimicking the role of the carbon vacancy. This in-
sures that for electron chemical potentials below the 1+/0
ionization level of VC-CSi, bulk SiC material is dominated
by donor defects, i.e. intrinsic SiC has a residual n-type
character.

Formation energies for the neutral antisites are in good
agreement with the results of reference [5]. In these work
a formation energy of 3.1 (4.3) eV is attributed to C0

Si
in C-rich (Si-rich) conditions that compares nicely with
our estimated formation energy 2.83 (4.15) eV. A similar
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Fig. 3. Defects formation energies in the high symmetry tetrahedral geometry (dotted line) and after the Jahn-Teller distortion
(solid line), computed using the Madelung correction of reference [16]. Same notation as in Figure 1 is used. The dashed line
shows the formation energy for the Jahn-Teller low symmetry geometry computed using the average cell potential correction of
reference [25]. Left panel: Carbon vacancy. Right panel: Silicon vacancy and VC-CSi complex.

satisfactory agreement is found for Si0C, their estimate of
4.0 (5.2) eV for the formation energy of Si0C in Si-rich (C-
rich) against our of 3.66 (4.98) eV. We find that in refer-
ences [6,10] the formation energy of CSi is underestimated
while that of SiC is overestimated. Indeed it would appear
that the carbon antisite is the dominant defect in SiC, i.e.
the material should have an intrinsic tendency to be rich
in carbon. Conversely, our results show that stoichiomet-
ric conditions at the growth determine the relative balance
between silicon and carbon antisites. In p-type conditions
SiC becomes a donor: we find that the charge state for SiC
varies from 1+ to 0, if Madelung correction are accounted
for. This is at variance with the results of reference [5]. In
that work the authors find that SiC can donate up to four
electrons. This difference is not surprising since ionization
levels for SiC are just above the valence band edge and
slightly different technicalities of the calculation can ac-
count for it. Indeed in Figure 4 we show that computing
the ionization levels by the average potential correction
(Ref. [25]) we get results similar to those of reference [5],
while using the Madelung corrections the ionization levels
are shifted down and only the 1+/0 level survives. These
findings put out that for defects with high charge state
even calculation done for largest supercells used in this
work are not yet totally at convergence.

3.3 Interstitials

As for self-interstitial defects we investigated Si and C in-
terstitials both in the tetrahedral sites (TS and TC) and
dumbbell configuration. Furthermore, we investigated the
stability and the charge states for the CI-CSi complex. The
results of the calculations for the different configurations
of a carbon interstitial defect are shown in Figure 5. We
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Fig. 4. Formation energy of a silicon antisite. Same notation
as in Figure 1 is used. The data sets shown are computed using
the Madelung correction of reference [16] (solid line) and the
average cell potential correction of reference [25] (dashed line).

find that the carbon interstitial atom lowest energy struc-
ture is always a dumbbell configuration, while the tetrahe-
dral configuration is energetically strongly unfavorable. In
the 2+ charge state the dumbbell is a 〈100〉-oriented car-
bon atom pair substituting at a carbon site (CI-C〈100〉2+).
For the other charge states the preferred configuration is
a strongly asymmetric CI-Si dumbbell. The latter is a low
symmetry structure, with the silicon-carbon pair lying in
the [11̄0] plane, where the silicon atom is very near to
the ideal lattice site and the dimer axis direction is in-
termediate between the 〈111〉 and the 〈110〉. In Figure 5
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(solid line) and 〈110〉-oriented dumbbell (dashed line).

for brevity we refer to this configuration as a CI-Si〈110〉
interstitial.

For the silicon interstitial atom too the actual con-
figuration depends on charge state. In this case we find
that the competing configurations are the tetrahedral in-
terstitial and the low symmetry SiI-C〈110〉 dumbbell. For
EF below 1.42 eV, the silicon atom sits at the TC intersti-
tial site and it behaves as a donor, releasing four electrons.
For higher Fermi levels the tetrahedral site is no more a
stable configuration and spontaneously converts into the
low symmetry SiI-C〈110〉 dumbbell interstitial, whose ge-
ometry has been already described for the carbon intersti-
tial. We point out that in the case of the silicon interstitial
tetrahedral and dumbbell configurations are very similar
in energy, within an interval of 0.15 eV, possibly beyond
the accuracy of the present calculations.

4 Conclusions and acknowledgments

In conclusion, in this work we have investigated the most
relevant native point defects in 3C-SiC. We conclude
that VC, SiC and CSi are the dominant defects in SiC.
VC is always the lowest energy defect in p-type SiC re-
gardless the value of the µSi and µC. In p-type and semi-
insulating SiC, VSi is a metastable defects that converts
exotermically into a VC-CSi complex. VC and VC-CSi are
the possible source of the experimental detected n-type
character of intrinsic SiC. Our results show that the ex-
cess of silicon typical of SiC samples is a consequence of
Si-rich stoichiometric conditions at growth. We confirm
that carbon interstitial atoms minimum energy configu-
ration is a dumbbell structure, while for the silicon inter-
stitial dumbbell and tetrahedral interstitial configurations
are very similar in energy.

This work has been funded by MIUR PRIN-2002 project “Frac-
ture mechanics in complex covalently-bonded materials”. We
acknowledge computational support by INFM under “Parallel
Computing” Initiative.
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